Contest debriefing

Scientific Committee

Result at $4^{\text {th }}$ hour

Total: 57 teams

First 4 hours only	A	B	C	D	E	F	G	H	I	J	K
	$10 / 44$	$0 / 3$	$42 / 93$	$3 / 19$	$55 / 105$	$52 / 103$	$26 / 166$	$5 / 27$	$7 / 18$	$17 / 57$	$0 / 1$
Solved / Tries	(22%)	(0%)	(45%)	(15%)	(52%)	(50%)	(15%)	(18%)	(38%)	(29%)	(0%)
Average tries	2.32	3	1.82	1.73	1.84	1.81	3.19	1.93	1.5	2.28	1
Averages tries to solve	3	--	1.79	1.33	1.62	1.71	2.5	1.6	1.29	2.35	--

- Problem J: Association of Cats and Magical Lights
- Problem H: Association for Convex Main Office
- Problem D: Association of Computer Maintenance
- Problem B: Association for Cool Machineries (Part 2)
- Problem I: Apples, Cherries, and Mangos
- Problem K: Association of Camera Makers
- (For problems C, E, F, G, J, please listen to the online commentary by Nathan and Jonathan. https://www.youtube.com/watch?v=o7zOIZMvpaQ. Or search "2015 ACM ICPC Singapore Regional Live Commentary" in youtube.com)

Association of Cats and Magical Lights

Problem J

Problem

- Input: A rooted tree of N nodes
- Color of node u is $C_{u}(1$ to 100$)$
- Parent of node u is P_{u}

- For a subtree rooted at node u, a color α is a magic color if the subtree has odd number of color α
- Query(u): Compute the number of magic colors of a node u
- Update (α, u) : Change the color of the node u to α

Example

- Query(b)=1
- black is odd \& white is even
- Query(c)=2
- both black and white are odd
- Update(red, f)
- Query(b)=3
- black, white and red are odd

Simple solution

- For each query Query(u),
- directly count the number of colors below node u
- Report the number of colors whose counts are odd
- For each update Update(c, u),
- Directly update the color of the node u
- This solution is slow

Flatten the tree

- Assign DFS order to the tree

	1	2	3	4	5	6	7
Node	a	b	e	f	c	g	d

- Every subtree rooted at some node can be represented as an interval

	a	b	c	d	e	f	g
S	1	2	5	7	3	4	6
E	7	4	6	7	3	4	6

Store each color

 as a modified Fenwick tree- Fenwick tree allows us to find range sum and update in $\mathrm{O}(\log \mathrm{N})$ time
- It can be modified to answer range parity

- Since we have 100 colors, the query time and update time is $\mathrm{O}(\log \mathrm{N})$

	a	b	c	d	e	f	g
S	1	2	5	7	3	4	6
E	7	4	6	7	3	4	6

$\left.\begin{array}{|l|l|l|l|l|l|l|l|}\hline & \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & 6 & 7 \\ \hline \text { Node } & \text { a } & \text { b } & \text { e } & \text { f } & \text { c } & \text { g } & \text { d } \\ \hline \text { White } & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ \hline \text { Black } & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\ \hline \text { Red } & 0 & 0 & 0 & 1 & 0 & 0 & 0\end{array}\right] \quad$ Build modified

Example

- Query(b) is the sum of range parity of [24]
- White: 1
- Black: 1

- Red: 1
- Ans: 3

	a	b	c	d	e	f	g
S	1	2	5	7	3	4	6
E	7	4	6	7	3	4	6

\(\left.\begin{array}{|l|l|l|l|l|l|l|l|}\hline \& 1 \& 2 \& 3 \& 4 \& 5 \& 6 \& 7

\hline Node \& a \& b \& e \& f \& c \& g \& d

\hline White \& 0 \& 1 \& 0 \& 0 \& 1 \& 0 \& 0

\hline Black \& 1 \& 0 \& 1 \& 0 \& 0 \& 1 \& 1

\hline Red \& 0 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0\end{array}\right] \quad\) [| Build modified |
| :--- |
| Fenwick tree |

Additional note

- Our intended solution is to represent 100 bits as 2 long long (2 * 64bits).
- Then, build a Fenwick tree for the 2 long long.
- Then, we just need to make one Fenwick tree query.
- However, Java version for Fenwick tree of 2 long long is slower than querying 100 Fenwick trees.
- So, we accept both solutions.

Association for Convex Main Office

Problem H

Problem

- Input: An integer $N(N \leq 400,000)$
- Output: N pairs of 2D coordinates $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)$ that form a convex hull
- such that $0 \leq x_{i}, y_{i} \leq 4 \times 10^{7}$.
- No three points are co-linear
- Example: $\mathrm{N}=4$

How to generate a convex office?

- Example: $\mathrm{N}=16$
- We form a set of $\mathrm{N} / 4$ right-angle triangles, all have different slope.

- Arrange the triangles in decreasing slopes.

- Create mirror-image.
- Then, a convex office with N vertices is formed
- Question: How to generate triangles of different slopes?

How to generate triangles of different slopes?

- Simple solution:

- This solution works for small N.
- When $\mathrm{N}>20000$, the width/height of all triangles $>4 \times 10^{7}$.

How to generate triangles of different slopes? (II)

- Generate triangle with the shortest height + width first.
- During the generation, need to ensure the height and the width are co-prime.
- (This guarantees that the slopes of all triangles are different.)
- E.g. We will not generate $(4,2)$ since $(4,2)$ and $(2,1)$ have the same slope.
- $2:(1,1)$,

- $4:(1,3),(3,1)$,
- $5:(1,4),(4,1),(2,3),(3,2)$,
- 6: $(1,5),(5,1)$,
- 7: $(1,6),(6,1),(2,5),(5,2),(3,4),(4,3)$,

Note

- This is a rare question in ICPC, which asks for corner case.
- But this type of questions is getting popular in other competitions.
- We hope that the students can develop skill set in this aspect.

Association of Computer Maintenance

Problem

- Input:
- The prime factorization of K
- (Constraint: Number of divisors of K is $\sim 10^{10}$.)
- Output: $\mathrm{f}(\mathrm{A}) \bmod \left(10^{9}+7\right)$
- such that integer A minimizes $f(A)=(A+K / A)$
- Example: $\mathrm{K}=2^{3}$ * 7
$-A=7$ minimizes $f(A)=A+K / A=7+8$
- We output $f(A)=7+8=15$

Observation

- To minimize $f(A)=A+K / A$, we choose an integer $\mathrm{A}(<\sqrt{K})$ that is closest to \sqrt{K}.
- Proof: By differentiation,
- $f^{\prime}(A)=1-K / A^{2}=0 \rightarrow A^{2}=K$.
- To minimize $f(A)$, we set $A=\sqrt{K}$ and $f(A)=2 \sqrt{K}$.
- However, \sqrt{K} may not be an integer.
- Then, we need to choose an integer A that is close to \sqrt{K}.

Brute-force solution

1. Let $\mathrm{A}=1$;
2. For every divisor P of K ,

- If $\mathrm{A}<\mathrm{P} \leq \sqrt{K}$ then
- set $A=P$;

3. Return $(A+K / A) \bmod \left(10^{9}+7\right)$;

- Example: $K=5^{2 *} 7^{1}$.
$-\sqrt{K}=13.23$
- The list of divisors of K is $1,5,7,25,35,175$.
- So, A is $7 \rightarrow A+K / A=7+25=32$.
- This solution may be slow since there are 10^{10} divisors for K .

A techique that requires us to verify $\sim 10^{5}$ divisors

- Partition K into two halves K_{1} and K_{2} such that $\mathrm{K}=\mathrm{K}_{1}{ }^{*} \mathrm{~K}_{2}$ and the number of divisors of K_{1} and K_{2} is $\sim 10^{5}$.
- For each divisor x_{i} of K_{1} from small to big,
- Find the biggest divisor y_{i} of K_{2} such that $x_{i}{ }^{*} y_{i}$ just smaller than \sqrt{K}
- Set A to be the biggest $x_{i}^{*} y_{i}$
- Report $(A+K / A) \bmod \left(10^{9}+7\right)$;
- This solution can run in $\mathrm{O}(\mathrm{N} \log \mathrm{N})$ time where $\mathrm{N}=10^{5}$. (See next slide)

Example

- $\quad \mathrm{K}=2^{3 *} 3^{2 *} 5^{1 *} 7^{4}$
$-\quad$ there are $(3+1)(2+1)(1+1)(4+1)=120$ (distinct) divisors.
- Set $\mathrm{K}_{1}=2^{3 *} 3^{2}$ and $\mathrm{K}_{2}=5^{1 *} 7^{4}$.
- $\quad K_{1}$ has $(3+1)(2+1)=12$ divisors.
- K_{2} has $(1+1)(4+1)=10$ divisors
- $\sqrt{K}=929.71$

K_{1}	K_{2}
1	12905
2	24)1
3	17\% 5
4	343
6	245
8	4
9	35
12	7
18	5
24	1
36	
72	

- Initialize $A=1$
- For $x_{1}=1, y_{1}=343 \rightarrow x_{1}{ }^{*} y_{1}=343$
- For $x_{2}=2, y_{2}=343 \rightarrow x_{2}{ }^{*} y_{2}=686$
- For $x_{3}=3, y_{3}=245 \rightarrow x_{3}{ }^{*} y_{3}=735$
- For $x_{4}=4, y_{4}=49 \rightarrow x_{4}{ }^{*} y_{4}=196$
- For $x_{5}=6, y_{5}=49 \rightarrow x_{5}{ }^{*} y_{5}=294$
- For $x_{6}=8, y_{6}=49 \rightarrow x_{6}{ }^{*} y_{6}=392$
- For $x_{7}=9, y_{7}=49 \rightarrow x_{7}{ }^{*} y_{7}=441$
- For $\mathrm{x}_{8}=12, \mathrm{y}_{8}=49 \rightarrow \mathrm{x}_{8}{ }^{*} \mathrm{y}_{8}=588$
- For $x_{9}=18, y_{9}=49 \rightarrow x_{9}{ }^{*} y_{9}=882$
- For $\mathrm{x}_{10}=24, \mathrm{y}_{10}=35 \rightarrow \mathrm{x}_{10}{ }^{*} \mathrm{y}_{10}=840$
- For $x_{11}=36, y_{11}=7 \rightarrow x_{11}{ }^{*} y_{11}=252$
- For $\mathrm{x}_{12}=72, \mathrm{y}_{12}=7 \rightarrow \mathrm{x}_{12}{ }^{*} \mathrm{y}_{12}=504$
- The biggest is $\mathrm{A}=\mathrm{x}_{9}{ }^{*} \mathrm{y}_{9}=882=2 * 3^{2 *} 7^{2}$. $K / A=2^{2 *} 5^{1 *} 7^{2}=980$.
- $A+K / A=882+980=1862$.

Handle big number

- Multiplication of big number is slow.
- Solution: Use logarithm
- Replace $X^{*} Y$ by $\log X+\log Y$
- It reduces the running time.

Association for Cool Machineries (Part 2)

Problem B

The problem for part 1

- Give a NxN grid and a sequence of <,>,^,,v
- Output X, which is the smallest repetition trail
- Example program: ${ }^{\wedge} \mathrm{v}>^{\wedge}<$

\#\#\#\#\#\#	\#\#\#\#\#\#				\#\#\#\#\#\#			\#\#\#\#\#\#			\#\#\#\#\#\#	
\# \# \#		\# \#	\#		\# \#	\#		\# \#	\#			\# \# \#
\# \# \#		\# \#	\#		\# \#	R\#		\# \#	\#	$\xrightarrow{>}$		\# \# R\#
\# R \#		\#	R\#		\#	\#		\#	\#		\#	\# \#
\#\# \#		\#\#	\#		\# \#	\#		\#\#	\#			\# \#
\#\#\#\#\#\# $\wedge \downarrow$		\#\#\# $>$			\#\#\#							\#\#\#\#\#\# $\wedge \downarrow$
\#\#\#\#\#\#		\#\#\#	\#\#		\#\#\#	\# \#		\#\#	\#\#			\#\#\#\#\#\#
\# \# \#		\# \#	\#		\# \#	\#		\# \#	R \#			\# \# R\#
\# \#R \#	$\xrightarrow{\text { V }}$	\# \#			\# \#	\#	$\xrightarrow{\wedge}$	\# \#	\#	\leftarrow		\# \#
\# \#			R \#		\#	\#		\#				\# \#
\#\# \#		\#\#	\#		\#\#	\#		\#\#	\#			\#\# \#
\#\#\#\#\#\#		\#\#\#	\#\#\#		\#\#\#	\# \# \#		\#\#\#	\#\#\#			\#\#\#\#\#\#

> The
> smallest
> repetition trail is of length 4

The problem for part 2

- Design
- a 200x200 grid and
- a sequence of $<,>, \wedge, v$
- such that the smallest repetition trail is of length $>10^{6}$

Idea

- Design a sequence (say, vv<<<^^^^>>) and walls that allows the robot to move up, down, left and right.
- E.g.

\# C \#	\#\# \#
\# 万 \#	\# a\#
\#a\#	\#\# \#
\# \#	\# . b \#
\# \#	\#\# \#
	\# C

- To make the robot move many steps, we design a difficult map.
- To make the robot move more, append $\wedge^{\wedge} v^{\wedge} v . . . \wedge v$ to the end of the sequence.
- E.g. $\mathrm{VV} \lll<^{\wedge \wedge \wedge}>^{\wedge} \mathrm{V}^{\wedge} \mathrm{V}^{\wedge} \mathrm{V}^{\wedge} \mathrm{V} . . . \wedge \mathrm{V}$

A difficult map for 12×12 grid

- For the 12×12 grid,
- $\quad \mathrm{a} \rightarrow \mathrm{b}: 5$ steps
- $b \rightarrow c: 6$ (=n-6) steps
- c $\rightarrow \mathrm{h}: 7+6^{*} 4=31$ steps
- $c \rightarrow d: 7(=n-5)$ steps $\leftarrow(n-11)$ times
- $d \rightarrow e: 6$ (=n-6) steps
- e $\rightarrow \mathrm{f}: 6$ steps
- $\mathrm{f} \rightarrow \mathrm{g}, \mathrm{g} \rightarrow \mathrm{h}: 6(=\mathrm{n}-6)$ steps $\leftarrow(\mathrm{n}-8) / 2$ times
- $\mathrm{h} \rightarrow \mathrm{i}: 10$ (=n-2) steps
- $\quad \mathrm{H} \rightarrow \mathrm{n}: 31$ steps
- $n \rightarrow a: 6+7+3^{*} 6=31$ steps
- $n \rightarrow 0: 6(=n-6)$ steps
- $o \rightarrow p: 7(=n-5)$ steps
- $p \rightarrow q, q \rightarrow r, r \rightarrow a: 6(=n-6)$ steps $\leftarrow(n-6) / 2$ times
$-a \rightarrow b \rightarrow \ldots \rightarrow q \rightarrow r \rightarrow a: 5+6+31+10+31+31=114$ steps
- In general, the number of steps is
$-5+(n-6)+[(n-11)(n-5)+(n-6)+6+(n-6)(n-8) / 2] *(n-2) / 5+(n-2)(n-7) / 5+$ $\left[(n-6)+(n-5)+(n-6)^{*}(n-6) / 2\right]$,
- which is $\mathrm{O}\left(\mathrm{n}^{3}\right)$.

```
12
vV<<<<^^^>>V^^
############
##l####f####
## k# e#
# m#j# g#d##
## #i## #c##
# n# # h# ##
## # ## # ##
# o# # b#
## ###### ##
# p q r a##
### # # # ##
############
```


Generalize the nxn grid

- For the 22×22 grid,
- by the previous formula, the robot needs to use 1,526 steps.
- For the 192×192 grid,
- by the previous formula, the robot needs to use 1,968,630 steps.

Note

- This is just one solution.
- You may find another solution.
- This is similar to convex office.
- The question asks for designing a corner test case.
- This is an important problem solving technique that is rarely tested in ICPC.

Apples, Cherries, and Mangos

Problem I

Problem

- WLOG, assume $A \geq C \geq M$
- We need to arrange them so that adjacent fruits are different
- Example: $A=2, C=1, M=1$

Solution: DP

- $\quad V(A, C, M)=$ no of valid ways to allocate all fruits
- $\quad V_{A}(A, C, M)=$ no of valid ways to allocate all fruits given that the first fruit is Apple
- $\quad V_{C}(A, C, M)=$ no of valid ways to allocate all fruits given that the first fruit is Cherry
- $\quad V_{M}(A, C, M)=$ no of valid ways to allocate all fruits given that the first fruit is Mango
- Base cases:
- $\quad V_{A}(1,0,0)=1, V_{C}(0,1,0)=1, V_{M}(0,0,1)=1$
- $\quad V_{w}(x, y, z)=0$ if $x<0$ or $y<0$ or $z<0$
- Recursive cases:
- $\quad V_{A}(A, C, M)=V_{C}(A-1, C, M)+V_{M}(A-1, C, M)$
- $V_{C}(A, C, M)=V_{A}(A, C-1, M)+V_{M}(A, C-1, M)$
- $\quad V_{M}(A, C, M)=V_{A}(A, C, M-1)+V_{C}(A, C, M-1)$
- $\quad V(A, C, M)=V_{A}(A, C, M)+V_{C}(A, C, M)+V_{M}(A, C, M)$
- This solution runs in $O\left(A^{*} C\right.$ * $\left.M\right)$
- It is too slow when the number of fruits is close to 200,000

Valid arrangement

- WLOG, assume $\mathrm{A} \geq \mathrm{C} \geq \mathrm{M}$
- For any valid arrangement, apples partitions the sequence into $A+1$ bins
- Every bin must be some cherries or mangos
- Except for the first and the last bins
- Depending on whether first and/or last bins are empty, we have 4 cases

Number of valid arrangements of

A,C,M

- Denote count ${ }_{C, M}(k)$ is the number of ways to arrange C cherries and M mangos into k bins such that adjacent fruits are different
- Theorem 1: The number of valid arrangements of A apples, C cherries and M mangos is:
$-\operatorname{count}_{C, M}(\mathrm{~A}-1)+2 \operatorname{count}_{C, M}(\mathrm{~A})+\operatorname{count}_{C, M}(\mathrm{~A}+1)$

Valid arrangement for cherries and mangos in each bin

- Suppose we don't have apple
- Assume we have c cherries and m mangos
- To have a valid arrangement, we need $\mathrm{c}=\mathrm{m}$ or $\mathrm{c}=\mathrm{m}-1$ or $\mathrm{c}=\mathrm{m}+1$
Same:

How to distribute cherries and mangos into k bins?

- Theorem 2: Assume $C<M$. The number of ways to distribute cherries and mangos into k bins is $\operatorname{count}_{C, M}(k)=$
- $\sum_{t_{1}=0}^{C}\left\{\left.\binom{k}{t_{1}, t_{2}, t_{3}}\binom{C+t_{2}-1}{C-t_{1}-t_{3}} 2^{t_{3}} \right\rvert\, t_{2}=M-C+t_{1}, t_{3}=k-t_{1}-t_{2}\right\}$
- Proof: Skip

Final algorithm

- By Theorems 1 and 2, we have the following algorithm

Algorithm ValidArrangment(A, C, M)
Input: Assume A > C > M
Return count $_{C, M}(\mathrm{~A}-1)+2 \operatorname{count}_{C, M}(\mathrm{~A})+\operatorname{count}_{C, M}(\mathrm{~A}+1)$;

Algorithm Count $\mathrm{C}_{\mathrm{C}, \mathrm{M}}(\mathrm{k})$
Return $\sum_{t_{1}=0}^{C}\left\{\left.\binom{k}{t_{1}, t_{2}, t_{3}}\binom{C+t_{2}-1}{C-t_{1}-t_{3}} 2^{t_{3}} \right\rvert\, t_{2}=M-C+t_{1}, t_{3}=k-t_{1}-t_{2}\right\}$;

Association of Camera Makers

Problem K

Association of Camera Makers

- Input:
- A set of points $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{N}, Y_{N}\right)$
- A threshold K
- Output:
- The minimum radius R such that a circle of radius R that covers K points
- Example: Suppose K=4.
- Ans: R=2

Can we verify if a radius-R circle cover K points?

- VerifyRadius (R, K) is a function that returns true if a radius-R circle exists that covers K points
- Suppose there exists a radius-R circle that contains K points
- Then, the radius-R circles of the K points should overlap
- Any point in the overlapping region can be the center of the radius-R circle.
- In particular, we can set any intersecting point as the center of the radius-R circle.

Example: $\mathrm{R}=4, \mathrm{~K}=4$

Idea for VerifyRadius(R,K)

- Let $\left(X_{i}, Y_{i}\right)$ and $\left(X_{j}, Y_{j}\right)$ be any two points
- Let Q and Q^{\prime} be the intersecting points of the radius-R circles of $\left(X_{i}, Y_{i}\right)$ and ($\mathrm{X}_{\mathrm{j}}, \mathrm{Y}_{\mathrm{j}}$)
- If there exist (K-2) other points whose distances from Q (or Q^{\prime}) are less than R, then
- VerifyRadius(R, K) returns true.

Example: $\mathrm{R}=4, \mathrm{~K}=4$

VerifyRadius(R,K)

Function VerifyRadius(R, K)

- For every pair of points $\left(X_{i}, Y_{\mathrm{i}}\right)$ and $\left(\mathrm{X}_{\mathrm{j}}, \mathrm{Y}_{\mathrm{j}}\right)$,
- If the radius-R circles of $\left(X_{i}, Y_{j}\right)$ and $\left(X_{j}, Y_{j}\right)$ overlap,
- Let the intersecting points be Q and Q^{\prime}
- Check if there are (K-2) points whose distances from Q (or Q^{\prime}) are less than R;
- If yes, return true;
- Return false;
- The running time is $\mathrm{O}\left(\mathrm{N}^{3}\right)$;

Solution

- Note that 0 and 10^{6} are the lower bound and upper bound, respectively, of the radius R
- This problem can be solved by binary search using FindRadius($0,10^{6}$)
- FindRadius(L, U)
- If (L and U are the same up to 2 decimal place) report L;
- M=(L+U)/2;
- If VerifyRadius(M, K) is true,
- FindRadius(M, U);
- Else
- FindRadius(L, M);

Still not good enough

- Previous solution runs in
$\mathrm{O}\left(\mathrm{N}^{3} \log 10^{8}\right)=\mathrm{O}\left(27 \mathrm{~N}^{3}\right)$ time
- It can handle cases where $\mathrm{N}<1000$
- Hence, it can solve 10 out of 16 test cases
- To solve all 16 test cases, please read the paper:
- Jiri Matousek. On enclosing k points by a circle, 1995
- Implementing this algorithm without an accelerating grid gives an $\mathrm{O}\left(\mathrm{N}^{2} \log ^{2} \mathrm{~N}\right)$ solution The full algorithm with the grid takes $\mathrm{O}\left(\mathrm{NK} \log ^{2} \mathrm{~K}\right.$) time

Acknowledgement (related to question setting)

- Problem setters
- Hubert Teo Hua Kian (Stanford University),
- Irvan Jahja,
- Mark Theng Kwang Hui (SG IOI),
- Ranald Lam Yun Shao (SG IOI),
- Dr Steven Halim,
- Professor Sung Wing Kin, Ken,
- Victor Loh Bo Huai (Facebook),
- William Gan Wei Liang (SG IOI)
- Scientific committee (Tester)
- Harta Wijaya (Garena),
- Jonathan Irvin Gunawan,
- Nathan Azaria
- Scientific committee (NUS staffs)
- Associate Professor Chang EeChien,
- Associate Professor Hugh Anderson,
- Dr Seth Lewis Gilbert,
- Professor Frank Christian Stephan,
- Associate Professor Leong Hon Wai
- Honorary Judges
- Dr Felix Halim (Google),
- Suhendry Effendy (ACM ICPC Jakarta Regional chief judge),
- Trinh Tuan Phuong (Quantcast),
- Fredrik Niemelä, Per Austrin, \& Greg Hamerly (Kattis)

