Contest debriefing

Scientific Committee

Result at 4th hour

Total: 57 teams

First 4 hours only	А	В	С	D	E	F	G	Н	- 1	J	K
	10/44	0/3	42/93	3/19	55/105	52/103	26/166	5/27	7/18	17/57	0/1
Solved / Tries	(22%)	(0%)	(45%)	(15%)	(52%)	(50%)	(15%)	(18%)	(38%)	(29%)	(0%)
Average tries	2.32	3	1.82	1.73	1.84	1.81	3.19	1.93	1.5	2.28	1
Averages tries to solve	3		1.79	1.33	1.62	1.71	2.5	1.6	1.29	2.35	

- Problem J: Association of Cats and Magical Lights
- Problem H: Association for Convex Main Office
- Problem D: Association of Computer Maintenance
- Problem B: Association for Cool Machineries (Part 2)
- Problem I: Apples, Cherries, and Mangos
- Problem K: Association of Camera Makers
- (For problems C, E, F, G, J, please listen to the online commentary by Nathan and Jonathan. <u>https://www.youtube.com/watch?v=o7z0IZMvpaQ</u>. Or search "2015 ACM ICPC Singapore Regional Live Commentary" in youtube.com)

Association of Cats and Magical Lights

Problem J

Problem

- Input: A rooted tree of N nodes
 - Color of node u is C_u (1 to 100)
 - Parent of node u is P_u

- For a subtree rooted at node u, a color α is a magic color if the subtree has odd number of color α
- Query(u): Compute the number of magic colors of a node u
- Update(α , u): Change the color of the node u to α

Example

• Query(b)=1

- black is odd & white is even

- Query(c)=2
 - both black and white are odd
- Update(red, f)
- Query(b)=3

black, white and red are odd

Simple solution

- For each query Query(u),
 - directly count the number of colors below node u
 - Report the number of colors whose counts are odd
- For each update Update(c, u),
 - Directly update the color of the node u

• This solution is slow

Flatten the tree

• Assign DFS order to the tree

	1	2	3	4	5	6	7
Node	а	b	е	f	С	g	d

• Every subtree rooted at some node can be represented as an interval

Store each color as a modified Fenwick tree ²

- Fenwick tree allows us to find range sum and update in O(log N) time
- It can be modified to answer range parity

• Since we have 100 colors, the query time and update time is O(log N)

	а	b	С	d	е	f	g
S	1	2	5	7	3	4	6
Ε	7	4	6	7	3	4	6
	1	2	3	4	5	6	7
Node	а	b	е	f	С	g	d
White	0	1	0	0	1	0	0
Black	1	0	1	0	0	1	1
Red	0	0	0	1	0	0	0

Example

- Query(b) is the sum of range parity of [2 4]
 - White: 1
 - Black: 1
 - Red: 1
 - Ans: 3

	а	b	С	d	е	f	g
S	1	2	5	7	3	4	6
E	7	4	6	7	3	4	6

	1	2	3	4	5	6	7
Node	а	b	е	f	С	g	d
White	0	1	0	0	1	0	0
Black	1	0	1	0	0	1	1
Red	0	0	0	1	0	0	0

Build modified Fenwick tree

Additional note

- Our intended solution is to represent 100 bits as 2 long long (2 * 64bits).
- Then, build a Fenwick tree for the 2 long long.
- Then, we just need to make one Fenwick tree query.
- However, Java version for Fenwick tree of 2 long long is slower than querying 100 Fenwick trees.
- So, we accept both solutions.

Association for Convex Main Office

Problem H

Problem

- Input: An integer N (N \leq 400,000)
- Output: N pairs of 2D coordinates (x_i, y_i) that form a convex hull
 - such that $0 \le x_i, y_i \le 4x10^7$.
 - No three points are co-linear

• Example: N=4

How to generate a convex office?

- Example: N=16
- We form a set of N/4 right-angle triangles, all have different slope.

- Arrange the triangles in decreasing slopes.
- Create mirror-image.
- Then, a convex office with N vertices is formed
- Question: How to generate triangles of different slopes?

How to generate triangles of different slopes?

• Simple solution:

- This solution works for small N.
- When N>20000, the width/height of all triangles > 4×10^7 .

How to generate triangles of different slopes? (II)

- Generate triangle with the shortest height + width first. •
 - During the generation, need to ensure the height and the width are co-prime.
 - (This guarantees that the slopes of all triangles are different.)
 - E.g. We will not generate (4, 2) since (4, 2) and (2, 1) have the same slope.
- 2: (1, 1),
 3: (1, 2), (2, 1),
- 4: (1, 3), (3, 1),
- 5: (1, 4), (4, 1), (2, 3), (3, 2),
- 6: (1, 5), (5, 1),
- 7: (1, 6), (6, 1), (2, 5), (5, 2), (3, 4), (4, 3), ۲

(h, w) W

.

Note

• This is a rare question in ICPC, which asks for corner case.

• But this type of questions is getting popular in other competitions.

• We hope that the students can develop skill set in this aspect.

Association of Computer Maintenance

Problem D

Problem

- Input:
 - The prime factorization of K
 - (Constraint: Number of divisors of K is $\sim 10^{10}$.)
- Output: f(*A*) mod (10⁹ + 7)

- such that integer A minimizes f(A) = (A + K/A)

• Example: K = 2³ * 7

– A=7 minimizes f(A)=A+K/A=7+8

- We output f(A)=7+8=15

Observation

- To minimize f(A)=A+K/A, we choose an integer A ($<\sqrt{K}$) that is closest to \sqrt{K} .
- Proof: By differentiation,
 - − $f'(A)=1-K/A^2=0 \rightarrow A^2=K$.
 - To minimize f(A), we set $A = \sqrt{K}$ and $f(A) = 2\sqrt{K}$.
- However, \sqrt{K} may not be an integer.
- Then, we need to choose an integer A that is close to \sqrt{K} .

Brute-force solution

- 1. Let A=1;
- 2. For every divisor P of K,
 - − If A < P ≤ \sqrt{K} then
 - set A=P;
- 3. Return (A + K/A) mod ($10^9 + 7$);
- Example: K=5²*7¹.
 - $-\sqrt{K} = 13.23$
 - The list of divisors of K is 1, 5, 7, 25, 35, 175.
 - − So, A is 7 \rightarrow A+K/A = 7+25 = 32.
- This solution may be slow since there are 10¹⁰ divisors for K.

A techique that requires us to verify ~10⁵ divisors

- Partition K into two halves K₁ and K₂ such that K=K₁*K₂ and the number of divisors of K₁ and K₂ is ~10⁵.
- For each divisor x_i of K₁ from small to big,
 - Find the biggest divisor y_i of K_2 such that $x_i^* y_i$ just smaller than \sqrt{K}
- Set A to be the biggest x_i*y_i
- Report (A + K/A) mod (10⁹+7);
- This solution can run in O(N log N) time where N=10⁵. (See next slide)

Example

- K = 2³ * 3² * 5¹ * 7⁴
 - there are (3+1)(2+1)(1+1)(4+1)=120 (distinct) divisors.
- Set K₁=2³*3² and K₂=5¹*7⁴.
- K₁ has (3+1)(2+1)=12 divisors.
- K₂ has (1+1)(4+1)=10 divisors
- $\sqrt{K} = 929.71$

- Initialize A=1
- For $x_1=1$, $y_1=343 \rightarrow x_1^* y_1 = 343$
- For $x_2=2$, $y_2=343 \rightarrow x_2*y_2=686$
- For $x_3=3$, $y_3=245 \rightarrow x_3*y_3=735$
- For $x_4 = 4$, $y_4 = 49 \rightarrow x_4 * y_4 = 196$
- For $x_5=6$, $y_5=49 \rightarrow x_5*y_5=294$
- For $x_6=8$, $y_6=49 \rightarrow x_6*y_6=392$
- For $x_7=9$, $y_7=49 \rightarrow x_7*y_7=441$
- For $x_8 = 12$, $y_8 = 49 \rightarrow x_8 * y_8 = 588$
- For $x_9=18$, $y_9=49 \rightarrow x_9*y_9=882$
- For $x_{10}=24$, $y_{10}=35 \rightarrow x_{10}*y_{10}=840$
- For $x_{11}=36$, $y_{11}=7 \rightarrow x_{11}*y_{11}=252$
- For $x_{12}=72$, $y_{12}=7 \rightarrow x_{12}*y_{12}=504$
- The biggest is $A=x_9*y_9=882=2*3^{2*}7^2$. K/A= $2^{2*}5^{1*}7^2=980$.
- A + K/A = 882+980=1862.

Handle big number

- Multiplication of big number is slow.
- Solution: Use logarithm

– Replace X * Y by log X + log Y

• It reduces the running time.

Association for Cool Machineries (Part 2)

Problem B

The problem for part 1

The

smallest

repetition

trail is of

length 4

- Give a NxN grid and a sequence of <,>,^,v
- Output X, which is the smallest repetition trail
- Example program: ^v>^<

The problem for part 2

- Design
 - a 200x200 grid and
 - a sequence of <,>,^,v
- such that the smallest repetition trail is of length > 10⁶

Idea

- Design a sequence (say, vv<<<^^^>>) and walls that allows the robot to move up, down, left and right.
- E.g. #c# ## # #b# # a# #a# ## # # # # b# # # # ## # # # #

- To make the robot move many steps, we design a difficult map.
- To make the robot move more, append ^v^v...^v to the end of the sequence.
 - E.g. vv<<<<^^^vv^vv^vv^v</pre>

A difficult map for 12x12 grid

12

vv<<<^^^>>v^

#############

##1###f###

m#j# g#d##

#i## #c##

e#

##

##

b#

##

##

#

k#

n# # h#

#

######

#

pgra##

#############

0#

- For the 12x12 grid,
 a→b: 5 steps
 b→c: 6 (=n-6) steps
 c→h: 7+6*4 = 31 steps
 c→d: 7 (=n-5) steps ← (n-11) times
 d→e: 6 (=n-6) steps
 e→f: 6 steps
 f→g, g→h: 6 (=n-6) steps ← (n-8)/2 times
 h→i: 10 (=n-2) steps
 i→n: 31 steps
 n→a: 6+7+3*6 = 31 steps
 - n→o: 6 (=n-6) steps
 - o→p: 7 (=n-5) steps
 - $p \rightarrow q, q \rightarrow r, r \rightarrow a: 6 (=n-6)$ steps $\leftarrow (n-6)/2$ times
 - a→b→...→q→r→a: 5+6+31+10+31+31=114 steps
- In general, the number of steps is
 - 5+(n-6)+[(n-11)(n-5)+(n-6)+6+(n-6)(n-8)/2]*(n-2)/5 + (n-2)(n-7)/5 + [(n-6) + (n-5) + (n-6)*(n-6)/2],
 - which is $O(n^3)$.

Generalize the nxn grid

- For the 22x22 grid,
 - by the previous formula, the robot needs to use 1,526 steps.

- For the 192x192 grid,
 - by the previous formula, the robot needs to use 1,968,630 steps.

22								
VV<	<<<	<~~/	`>>	>v^v	v^v	v^v⁄	`v′	`v^
###	ŧ#‡	+ # # #	ŧ # ŧ	ŧ # # Ŧ	##	####	ŧ#ŧ	###
##	# #	##	# ‡	###	# 1	###	##	###
##	/	↑ #	/	\ #	1	#	/	▶ #
#	#	#	#	#	#	#	#	##
##	#	##	#	##	#	##	#	##
#	#	#	#	#	#	#	#	##
##	#	##	#	##	#	##	#	##
#	#	#	#	#	#	#	#	##
##	#	##	#	##	#	##	#	##
#	#	#	#	#	#	#	#	##
##	#	##	#	##	#	##	#	##
#	#	#	#	#	#	#	#	##
##	#	##	#	##	#	##	#	##
#	#	#	#	#	#	#	#	##
##	#	##	#	##	#	##	#	##
#	#	#	#	#	#	#	#	##
##	#	##	#	##	#	##	#	##
#	#		#		/ #		#	#
##	# #	+ # # 4	ŧ # ŧ	###	##	####	ŧ#	##
#	√						→F	\##
###	ŧ ŧ	ŧ #	#	# =	# 1	# #	#	##
###	ŧ # ‡	+ # # #	ŧ # ŧ	ŧ # # Ŧ	##4	####	ŧ # ‡	ŧ##

Note

- This is just one solution.
- You may find another solution.

- This is similar to convex office.
- The question asks for designing a corner test case.
- This is an important problem solving technique that is rarely tested in ICPC.

Apples, Cherries, and Mangos

Problem I

Problem

- WLOG, assume $A \ge C \ge M$
- We need to arrange them so that adjacent fruits are different
- Example: A=2, C=1, M=1

Solution: DP

- V(A, C, M) = no of valid ways to allocate all fruits
- $V_A(A, C, M) = no$ of valid ways to allocate all fruits given that the first fruit is Apple
- V_c(A, C, M) = no of valid ways to allocate all fruits given that the first fruit is Cherry
- V_M(A, C, M) = no of valid ways to allocate all fruits given that the first fruit is Mango
- Base cases:
 - $V_A(1, 0, 0) = 1, V_C(0, 1, 0) = 1, V_M(0, 0, 1) = 1$
 - V_w(x, y, z) = 0 if x<0 or y<0 or z<0</p>
- Recursive cases:
 - $V_A(A, C, M) = V_C(A-1, C, M) + V_M(A-1, C, M)$
 - $V_{C}(A, C, M) = V_{A}(A, C-1, M) + V_{M}(A, C-1, M)$
 - $V_M(A, C, M) = V_A(A, C, M-1) + V_C(A, C, M-1)$
 - $V(A, C, M) = V_A(A, C, M) + V_C(A, C, M) + V_M(A, C, M)$
- This solution runs in O(A * C * M)
- It is too slow when the number of fruits is close to 200,000

Valid arrangement

- WLOG, assume $A \ge C \ge M$
- For any valid arrangement, apples partitions the sequence into A+1 bins
- Every bin must be some cherries or mangos
 - Except for the first and the last bins
- Depending on whether first and/or last bins are empty, we have 4 cases

Number of valid arrangements of A,C,M

- Denote count_{C,M}(k) is the number of ways to arrange C cherries and M mangos into k bins such that adjacent fruits are different
- **Theorem 1**: The number of valid arrangements of A apples, C cherries and M mangos is:
 - $count_{C,M}(A-1) + 2count_{C,M}(A) + count_{C,M}(A+1)$

Valid arrangement for cherries and mangos in each bin

- Suppose we don't have apple
- Assume we have c cherries and m mangos
- To have a valid arrangement, we need c=m or c=m-1 or c=m+1

How to distribute cherries and mangos into k bins?

• **Theorem 2**: Assume C<M. The number of ways to distribute cherries and mangos into k bins is $count_{C,M}(k) =$

•
$$\sum_{t_1=0}^{C} \left\{ \binom{k}{t_1, t_2, t_3} \binom{C+t_2-1}{C-t_1-t_3} 2^{t_3} \middle| t_2 = M-C+t_1, t_3 = k-t_1-t_2 \right\}$$

• Proof: Skip

Final algorithm

• By Theorems 1 and 2, we have the following algorithm

Algorithm ValidArrangment(A, C, M) Input: Assume A > C > MReturn $count_{C,M}(A - 1) + 2count_{C,M}(A) + count_{C,M}(A + 1);$

Algorithm $Count_{C,M}(k)$

Return
$$\sum_{t_1=0}^{C} \left\{ \binom{k}{t_1, t_2, t_3} \binom{C+t_2-1}{C-t_1-t_3} 2^{t_3} \middle| t_2 = M-C+t_1, t_3 = k-t_1-t_2 \right\};$$

Association of Camera Makers

Problem K

Association of Camera Makers

- Input:
 - A set of points (X_1, Y_1) , ..., (X_N, Y_N)
 - A threshold K
- Output:
 - The minimum radius R such that a circle of radius R that covers K points

Can we verify if a radius-R circle cover K points?

- VerifyRadius(R, K) is a function that returns true if a radius-R circle exists that covers K points
- Suppose there exists a radius-R circle that contains K points
 - Then, the radius-R circles of the K points should overlap
 - Any point in the overlapping region can be the center of the radius-R circle.
 - In particular, we can set any intersecting point as the center of the radius-R circle.

Example: R=4, K=4

Idea for VerifyRadius(R,K)

- Let (X_i, Y_i) and (X_i, Y_i) be any two points
- Let Q and Q' be the intersecting points of the radius-R circles of (X_i, Y_i) and (X_j, Y_j)
- If there exist (K-2) other points whose distances from Q (or Q') are less than R, then
 - VerifyRadius(R, K) returns true.

Example: R=4, K=4

VerifyRadius(R,K)

Function VerifyRadius(R, K)

- For every pair of points (X_i, Y_i) and (X_j, Y_j) ,
 - If the radius-R circles of (X_i, Y_i) and (X_i, Y_i) overlap,
 - Let the intersecting points be Q and Q'
 - Check if there are (K-2) points whose distances from Q (or Q') are less than R;
 - If yes, return true;
- Return false;
- The running time is O(N³);

Solution

- Note that 0 and 10⁶ are the lower bound and upper bound, respectively, of the radius R
- This problem can be solved by binary search using FindRadius(0, 10⁶)
- FindRadius(L, U)
 - If (L and U are the same up to 2 decimal place) report L;
 - M=(L+U)/2;
 - If VerifyRadius(M, K) is true,
 - FindRadius(M, U);
 - Else
 - FindRadius(L, M);

Still not good enough

- Previous solution runs in O(N³ log 10⁸) = O(27 N³) time
- It can handle cases where N<1000
- Hence, it can solve 10 out of 16 test cases
- To solve all 16 test cases, please read the paper:
 - Jiri Matousek. On enclosing k points by a circle, 1995
 - Implementing this algorithm without an accelerating grid gives an O(N² log² N) solution The full algorithm with the grid takes O(NK log² K) time

Acknowledgement (related to question setting)

- Problem setters
 - Hubert Teo Hua Kian (Stanford University),
 - Irvan Jahja,
 - Mark Theng Kwang Hui (SG IOI),
 - Ranald Lam Yun Shao (SG IOI),
 - Dr Steven Halim,
 - Professor Sung Wing Kin, Ken,
 - Victor Loh Bo Huai (Facebook),
 - William Gan Wei Liang (SG IOI)
- Scientific committee (Tester)
 - Harta Wijaya (Garena),
 - Jonathan Irvin Gunawan,
 - Nathan Azaria

- Scientific committee (NUS staffs)
 - Associate Professor Chang Ee-Chien,
 - Associate Professor Hugh Anderson,
 - Dr Seth Lewis Gilbert,
 - Professor Frank Christian Stephan,
 - Associate Professor Leong Hon Wai
- Honorary Judges
 - Dr Felix Halim (Google),
 - Suhendry Effendy (ACM ICPC Jakarta Regional chief judge),
 - Trinh Tuan Phuong (Quantcast),
 - Fredrik Niemelä, Per Austrin, & Greg Hamerly (Kattis)