
Contest debriefing

Scientific Committee

Result at 4th hour
First 4 hours only A B C D E F G H I J K

Solved / Tries
10/44
(22%)

0/3
(0%)

42/93
(45%)

3/19
(15%)

55/105
(52%)

52/103
(50%)

26/166
(15%)

5/27
(18%)

7/18
(38%)

17/57
(29%)

0/1
(0%)

Average tries 2.32 3 1.82 1.73 1.84 1.81 3.19 1.93 1.5 2.28 1
Averages tries to solve 3 -- 1.79 1.33 1.62 1.71 2.5 1.6 1.29 2.35 --

Total: 57 teams

• Problem J: Association of Cats and Magical Lights
• Problem H: Association for Convex Main Office
• Problem D: Association of Computer Maintenance
• Problem B: Association for Cool Machineries (Part 2)
• Problem I: Apples, Cherries, and Mangos
• Problem K: Association of Camera Makers

Averages tries to solve 3 -- 1.79 1.33 1.62 1.71 2.5 1.6 1.29 2.35 --

• (For problems C, E, F, G, J, please listen to the online commentary by
Nathan and Jonathan. https://www.youtube.com/watch?v=o7z0IZMvpaQ .
Or search “2015 ACM ICPC Singapore Regional Live Commentary” in
youtube.com)

Association of Cats and Magical Association of Cats and Magical
Lights

Problem J

Problem

• Input: A rooted tree of N nodes

– Color of node u is C (1 to 100)

a

cb d

– Color of node u is Cu (1 to 100)

– Parent of node u is Pu

• For a subtree rooted at node u, a color  is a
magic color if the subtree has odd number of
color 

e f g

• Query(u): Compute the number of magic colors
of a node u

• Update(, u): Change the color of the node u to 

Example

• Query(b)=1

– black is odd & white is even

a

cb d

– black is odd & white is even

• Query(c)=2

– both black and white are odd

• Update(red, f)

• Query(b)=3

e f g

a

• Query(b)=3

– black, white and red are odd
cb d

e f g

Simple solution

• For each query Query(u),

– directly count the number of colors below node u – directly count the number of colors below node u

– Report the number of colors whose counts are
odd

• For each update Update(c, u),

– Directly update the color of the node u – Directly update the color of the node u

• This solution is slow

Flatten the tree

• Assign DFS order to the tree

a

cb d

1

2

3 4

5

6

7

• Every subtree rooted at some node can be
represented as an interval

e f g

3 4 6

1 2 3 4 5 6 7

Node a b e f c g d

represented as an interval
a b c d e f g

S 1 2 5 7 3 4 6

E 7 4 6 7 3 4 6

Store each color
as a modified Fenwick tree
• Fenwick tree allows us to find range sum

and update in O(log N) time

a

cb d

1

2

3 4

5

6

7

• It can be modified to answer range
parity

• Since we have 100 colors, the query time and update time is O(log N)

e f g

3 4 6

a b c d e f g

S 1 2 5 7 3 4 6

E 7 4 6 7 3 4 6E 7 4 6 7 3 4 6

1 2 3 4 5 6 7

Node a b e f c g d

White 0 1 0 0 1 0 0

Black 1 0 1 0 0 1 1

Red 0 0 0 1 0 0 0

Build modified
Fenwick tree

Example

• Query(b) is the sum of range parity of [2 4]
– White: 1

a

cb d

1

2

3 4

5

6

7

– White: 1

– Black: 1

– Red: 1

– Ans: 3

e f g

3 4 6

a b c d e f g

S 1 2 5 7 3 4 6

E 7 4 6 7 3 4 6E 7 4 6 7 3 4 6

1 2 3 4 5 6 7

Node a b e f c g d

White 0 1 0 0 1 0 0

Black 1 0 1 0 0 1 1

Red 0 0 0 1 0 0 0

Build modified
Fenwick tree

Additional note

• Our intended solution is to represent 100 bits as
2 long long (2 * 64bits).2 long long (2 * 64bits).

• Then, build a Fenwick tree for the 2 long long.
• Then, we just need to make one Fenwick tree

query.

• However, Java version for Fenwick tree of 2 long
long is slower than querying 100 Fenwick trees.
However, Java version for Fenwick tree of 2 long
long is slower than querying 100 Fenwick trees.

• So, we accept both solutions.

Association for Convex Main Association for Convex Main
Office

Problem H

Problem

• Input: An integer N (N  400,000)

• Output: N pairs of 2D coordinates (x , y) that • Output: N pairs of 2D coordinates (xi, yi) that
form a convex hull

– such that 0xi,yi4x107.

– No three points are co-linear
(1,2)

• Example: N=4
(0,1) (2,1)

(1,0)

How to generate a convex office?

• Example: N=16
• We form a set of N/4 right-angle triangles, all

have different slope.have different slope.

• Arrange the triangles in decreasing slopes.
• Create mirror-image.
• Then, a convex office with N vertices is

3/1 2/1 1/1 1/2

• Then, a convex office with N vertices is
formed

• Question: How to generate triangles of
different slopes?

How to generate triangles of different
slopes?

• Simple solution:

• This solution works for small N.

• When N>20000, the width/height of all
triangles > 4x107.

3/1 2/1 1/1 1/2 1/3

…… ……

triangles > 4x107.

How to generate triangles of different
slopes? (II)

• Generate triangle with the shortest height + width first.

– During the generation, need to ensure the height and the width are – During the generation, need to ensure the height and the width are
co-prime.

– (This guarantees that the slopes of all triangles are different.)

– E.g. We will not generate (4, 2) since (4, 2) and (2, 1) have the same
slope.

• 2: (1, 1),

• 3: (1, 2), (2, 1),

h

w

(h, w)
1/1

2/1
1/2

• 3: (1, 2), (2, 1),

• 4: (1, 3), (3, 1),

• 5: (1, 4), (4, 1), (2, 3), (3, 2),

• 6: (1, 5), (5, 1),

• 7: (1, 6), (6, 1), (2, 5), (5, 2), (3, 4), (4, 3),

• ……

2/1

Note

• This is a rare question in ICPC, which asks for
corner case.corner case.

• But this type of questions is getting popular in
other competitions.

• We hope that the students can develop skill
set in this aspect.

Association of Computer Association of Computer
Maintenance

Problem D

Problem

• Input:
– The prime factorization of K– The prime factorization of K

– (Constraint: Number of divisors of K is ~ 1010.)

• Output: f(A) mod (109 + 7)
– such that integer A minimizes f(A) = (A + K/A)

• Example: K = 23 * 7
– A=7 minimizes f(A)=A+K/A=7+8

– We output f(A)=7+8=15

Observation

f(A) = A + 25/Af(A) = A + 25/A

A=5 minimizes
A+25/A

Brute-force solution

A techique that requires us to verify
~105 divisors

Example
• Initialize A=1
• For x1=1, y1=343  x1*y1 = 343
• For x2=2, y2=343  x2*y2 = 686
• For x3=3, y3=245  x3*y3 = 735
• For x4=4, y4=49  x4*y4=196• For x4=4, y4=49  x4*y4=196
• For x5=6, y5=49  x5*y5=294
• For x6=8, y6=49  x6*y6=392
• For x7=9, y7=49  x7*y7=441
• For x8=12, y8=49  x8*y8=588
• For x9=18, y9=49  x9*y9=882
• For x10=24, y10=35  x10*y10=840
• For x11=36, y11=7  x11*y11=252
• For x12=72, y12=7  x12*y12=504

• The biggest is A=x9*y9=882=2*32*72.

K2

12005

2401

1715

343

X

X

X

X

K1

1

2

3

4 • The biggest is A=x9*y9=882=2*3 *7 .
K/A=22*51*72=980.

• A + K/A = 882+980=1862.
245

49

35

7

5

1

X

X

X

X

6

8

9

12

18

24

36

72

Handle big number

• Multiplication of big number is slow.

• Solution: Use logarithm • Solution: Use logarithm

– Replace X * Y by log X + log Y

• It reduces the running time.

Association for Cool Machineries Association for Cool Machineries
(Part 2)

Problem B

The problem for part 1

• Give a NxN grid and a sequence of <,>,^,v

• Output X, which is the smallest repetition trail • Output X, which is the smallest repetition trail

• Example program: ^v>^<
######
#
#
R
#

######
#
#
R#
#

######
#
#R
#
#

The



######
#
R#
#
#

^


######
#
R#
#
#

>

######

######
#
#R
#
#
######

^

######

>
######
#
#R
#
#
######

<

######

v
######
R#
#
#
#
######

^

The
smallest
repetition
trail is of
length 4



######
#
#
R
#
######

v

######



######
#R
#
#
#
######

^

######


<

The problem for part 2

• Design

– a 200x200 grid and – a 200x200 grid and

– a sequence of <,>,^,v

• such that the smallest repetition trail is of
length > 106

Idea

• Design a sequence (say, vv<<<^^^>>) and walls that allows the
robot to move up, down, left and right.

E.g.• E.g.

• To make the robot move many steps, we design a difficult map.

#
#
#a#
#
#

b

#
a#
#
#
#
#

b

c

c

• To make the robot move many steps, we design a difficult map.

• To make the robot move more, append ^v^v…^v to the end of the
sequence.
– E.g. vv<<<^^^>>^v^v^v^v…^v

A difficult map for 12x12 grid
• For the 12x12 grid,

– ab: 5 steps

– bc: 6 (=n-6) steps

– ch: 7+6*4 = 31 steps

12
vv<<<^^^>>v^
############
####
#
l

e
f

k– ch: 7+6*4 = 31 steps

• cd: 7 (=n-5) steps  (n-11) times

• de: 6 (=n-6) steps

• ef: 6 steps

• fg, gh: 6 (=n-6) steps  (n-8)/2 times

– hi: 10 (=n-2) steps

– in: 31 steps

– na: 6+7+3*6 = 31 steps

• no: 6 (=n-6) steps

• op: 7 (=n-5) steps

• pq, qr, ra: 6 (=n-6) steps  (n-6)/2 times

#
##
##
##
##
#
##
##
##
############

m

n

o

p

b

c
d
e

g

h
i
j
k

q r a

• pq, qr, ra: 6 (=n-6) steps  (n-6)/2 times

– ab…qra: 5+6+31+10+31+31=114 steps

• In general, the number of steps is

– 5+(n-6)+[(n-11)(n-5)+(n-6)+6+(n-6)(n-8)/2]*(n-2)/5 + (n-2)(n-7)/5 +
[(n-6) + (n-5) + (n-6)*(n-6)/2],

– which is O(n3).

Generalize the nxn grid

• For the 22x22 grid,

– by the previous formula, the

22
vv<<<^^^>>v^v^v^v^v^v^
######################
####

– by the previous formula, the
robot needs to use 1,526 steps.

• For the 192x192 grid,

– by the previous formula, the

####
#
##
##
##
##
##
##
##
##
##
##– by the previous formula, the

robot needs to use 1,968,630
steps.

##
##
##
##
##
#
##
R##
##
######################

Note

• This is just one solution.

• You may find another solution.• You may find another solution.

• This is similar to convex office.

• The question asks for designing a corner test
case.case.

• This is an important problem solving
technique that is rarely tested in ICPC.

Apples, Cherries, and Mangos

Problem I

Problem

• WLOG, assume A ≥ C ≥ M

• We need to arrange them so that adjacent fruits are • We need to arrange them so that adjacent fruits are
different

• Example: A=2, C=1, M=1

Solution: DP

• V(A, C, M) = no of valid ways to allocate all fruits
• VA(A, C, M) = no of valid ways to allocate all fruits given that the first fruit is Apple
• VC(A, C, M) = no of valid ways to allocate all fruits given that the first fruit is CherryVC(A, C, M) = no of valid ways to allocate all fruits given that the first fruit is Cherry
• VM(A, C, M) = no of valid ways to allocate all fruits given that the first fruit is Mango

• Base cases:
– VA(1, 0, 0) = 1, VC(0, 1, 0) = 1, VM(0, 0, 1) = 1
– Vw(x, y, z) = 0 if x<0 or y<0 or z<0

• Recursive cases:
– VA(A, C, M) = VC(A-1, C, M) + VM(A-1, C, M)
– VC(A, C, M) = VA(A, C-1, M) + VM(A, C-1, M)
– VM(A, C, M) = VA(A, C, M-1) + VC(A, C, M-1)
– V(A, C, M) = VA(A, C, M) + VC(A, C, M) + VM(A, C, M)– V(A, C, M) = VA(A, C, M) + VC(A, C, M) + VM(A, C, M)

• This solution runs in O(A * C * M)
• It is too slow when the number of fruits is close to 200,000

Valid arrangement

• WLOG, assume A ≥ C ≥ M

• For any valid arrangement, apples partitions the sequence into A+1 bins

• Every bin must be some cherries or mangos • Every bin must be some cherries or mangos

– Except for the first and the last bins

• Depending on whether first and/or last bins are empty, we have 4 cases

……

^ ^ ^^ ^ ^

^ ^ ^ ^ ^

……A+1 bins:

^ ^ ^ ^ ^

^ ^ ^^ ^

^ ^ ^ ^

……

……

……

A bins:

A bins:

A-1 bins:

Number of valid arrangements of
A,C,M

……

^ ^ ^^ ^ ^

^ ^ ^ ^ ^

……A+1 bins:

^ ^ ^ ^ ^

^ ^ ^^ ^

^ ^ ^ ^

……

……

……

A bins:

A bins:

A-1 bins:

Valid arrangement for cherries and
mangos in each bin

• Suppose we don’t have apple

• Assume we have c cherries and m mangos • Assume we have c cherries and m mangos

• To have a valid arrangement, we need
c=m or c=m-1 or c=m+1

c=m or 2 arrangementsSame: c=m

c=m+1

c=m-1

or 2 arrangements

1 arrangement

1 arrangement

Same:

C_major:

M_major:

How to distribute cherries and mangos
into k bins?

Final algorithm

Association of Camera Makers

Problem K

Association of Camera Makers

• Input:
– A set of points (X1,Y1), …, (XN, YN)– A set of points (X1,Y1), …, (XN, YN)

– A threshold K

• Output:
– The minimum radius R such that a circle of radius R that covers K

points

• Example: Suppose K=4.• Example: Suppose K=4.
– Ans: R=2



(2,0)




(0,-2)

(-2,0)

 (1,1)



(6,0)

Can we verify if a radius-R circle cover
K points?

• VerifyRadius(R, K) is a function that returns true if a radius-R circle exists
that covers K points

• Suppose there exists a radius-R circle that contains K points

– Then, the radius-R circles of the K points should overlap

– Any point in the overlapping region can be the center of the radius-R circle.
• In particular, we can set any intersecting point as the center of the radius-R circle.

Example: R=4, K=4








 


Idea for VerifyRadius(R,K)

• Let (Xi, Yi) and (Xj, Yj) be any two points

• Let Q and Q’ be the intersecting points of the radius-R circles of (Xi, Yi) and • Let Q and Q’ be the intersecting points of the radius-R circles of (Xi, Yi) and
(Xj, Yj)

• If there exist (K-2) other points whose distances from Q (or Q’) are less
than R, then

– VerifyRadius(R, K) returns true.

Example: R=4, K=4








(Xi, Yi)

(Xj, Yj)

Q

Q’




VerifyRadius(R,K)

Function VerifyRadius(R, K)

• For every pair of points (Xi,Yi) and (Xj,Yj),• For every pair of points (Xi,Yi) and (Xj,Yj),

– If the radius-R circles of (Xi,Yi) and (Xj,Yj) overlap,

• Let the intersecting points be Q and Q’

• Check if there are (K-2) points whose distances from Q
(or Q’) are less than R;

• If yes, return true;If yes, return true;

• Return false;

• The running time is O(N3);

Solution

• Note that 0 and 106 are the lower bound and upper
bound, respectively, of the radius R bound, respectively, of the radius R

• This problem can be solved by binary search using
FindRadius(0, 106)

• FindRadius(L, U)
– If (L and U are the same up to 2 decimal place) report L;
– M=(L+U)/2;– M=(L+U)/2;
– If VerifyRadius(M, K) is true,

• FindRadius(M, U);

– Else
• FindRadius(L, M);

Still not good enough

• Previous solution runs in
O(N3 log 108) = O(27 N3) time O(N3 log 108) = O(27 N3) time

• It can handle cases where N<1000

• Hence, it can solve 10 out of 16 test cases

• To solve all 16 test cases, please read the paper:
– Jiri Matousek. On enclosing k points by a circle, 1995 – Jiri Matousek. On enclosing k points by a circle, 1995

– Implementing this algorithm without an accelerating
grid gives an O(N2 log2 N) solution The full algorithm
with the grid takes O(NK log2 K) time

Acknowledgement
(related to question setting)

• Problem setters
– Hubert Teo Hua Kian (Stanford

University),

• Scientific committee (NUS staffs)
– Associate Professor Chang Ee-

Chien,University),
– Irvan Jahja,
– Mark Theng Kwang Hui (SG IOI),
– Ranald Lam Yun Shao (SG IOI),
– Dr Steven Halim,
– Professor Sung Wing Kin, Ken,
– Victor Loh Bo Huai (Facebook),
– William Gan Wei Liang (SG IOI)

• Scientific committee (Tester)
– Harta Wijaya (Garena),

Chien,
– Associate Professor Hugh

Anderson,
– Dr Seth Lewis Gilbert,
– Professor Frank Christian Stephan,
– Associate Professor Leong Hon Wai

• Honorary Judges
– Dr Felix Halim (Google),
– Suhendry Effendy (ACM ICPC

Jakarta Regional chief judge),– Harta Wijaya (Garena),
– Jonathan Irvin Gunawan,
– Nathan Azaria

Jakarta Regional chief judge),
– Trinh Tuan Phuong (Quantcast),
– Fredrik Niemelä, Per Austrin, &

Greg Hamerly (Kattis)

