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Result at 4th hour
First 4 hours only A B C D E F G H I J K

Solved / Tries
10/44 
(22%)

0/3 
(0%)

42/93 
(45%)

3/19 
(15%)

55/105 
(52%)

52/103 
(50%)

26/166 
(15%)

5/27 
(18%)

7/18 
(38%)

17/57 
(29%)

0/1 
(0%)

Average tries 2.32 3 1.82 1.73 1.84 1.81 3.19 1.93 1.5 2.28 1
Averages tries to solve 3 -- 1.79 1.33 1.62 1.71 2.5 1.6 1.29 2.35 --

Total: 57 teams

• Problem J: Association of Cats and Magical Lights
• Problem H: Association for Convex Main Office
• Problem D: Association of Computer Maintenance
• Problem B: Association for Cool Machineries (Part 2)
• Problem I: Apples, Cherries, and Mangos
• Problem K: Association of Camera Makers

Averages tries to solve 3 -- 1.79 1.33 1.62 1.71 2.5 1.6 1.29 2.35 --

• (For problems C, E, F, G, J, please listen to the online commentary by 
Nathan and Jonathan. https://www.youtube.com/watch?v=o7z0IZMvpaQ .
Or search “2015 ACM ICPC Singapore Regional Live Commentary” in 
youtube.com)



Association of Cats and Magical Association of Cats and Magical 
Lights

Problem J



Problem

• Input: A rooted tree of N nodes 

– Color of node u is C (1 to 100)

a

cb d

– Color of node u is Cu (1 to 100)

– Parent of node u is Pu

• For a subtree rooted at node u, a color  is a 
magic color if the subtree has odd number of 
color 

e f g

• Query(u): Compute the number of magic colors 
of a node u

• Update(, u): Change the color of the node u to 



Example

• Query(b)=1

– black is odd & white is even

a

cb d

– black is odd & white is even

• Query(c)=2

– both black and white are odd 

• Update(red, f)

• Query(b)=3

e f g

a

• Query(b)=3

– black, white and red are odd
cb d

e f g



Simple solution

• For each query Query(u), 

– directly count the number of colors below node u  – directly count the number of colors below node u  

– Report the number of colors whose counts are 
odd 

• For each update Update(c, u),

– Directly update the color of the node u – Directly update the color of the node u 

• This solution is slow 



Flatten the tree

• Assign DFS order to the tree 

a

cb d

1

2

3 4

5

6

7

• Every subtree rooted at some node can be 
represented as an interval 

e f g

3 4 6

1 2 3 4 5 6 7

Node a b e f c g d

represented as an interval 
a b c d e f g

S 1 2 5 7 3 4 6

E 7 4 6 7 3 4 6



Store each color
as a modified Fenwick tree
• Fenwick tree allows us to find range sum 

and update in O(log N) time 

a

cb d

1

2

3 4

5

6

7

• It can be modified to answer range
parity 

• Since we have 100 colors, the query time and update time is O(log N) 

e f g

3 4 6

a b c d e f g

S 1 2 5 7 3 4 6

E 7 4 6 7 3 4 6E 7 4 6 7 3 4 6

1 2 3 4 5 6 7

Node a b e f c g d

White 0 1 0 0 1 0 0

Black 1 0 1 0 0 1 1

Red 0 0 0 1 0 0 0

Build modified
Fenwick tree



Example

• Query(b) is the sum of range parity of [2  4]
– White: 1

a

cb d

1

2

3 4

5

6

7

– White: 1

– Black: 1

– Red: 1

– Ans: 3

e f g

3 4 6

a b c d e f g

S 1 2 5 7 3 4 6

E 7 4 6 7 3 4 6E 7 4 6 7 3 4 6

1 2 3 4 5 6 7

Node a b e f c g d

White 0 1 0 0 1 0 0

Black 1 0 1 0 0 1 1

Red 0 0 0 1 0 0 0

Build modified
Fenwick tree



Additional note

• Our intended solution is to represent 100 bits as 
2 long long (2 * 64bits).2 long long (2 * 64bits).

• Then, build a Fenwick tree for the 2 long long.
• Then, we just need to make one Fenwick tree 

query.

• However, Java version for Fenwick tree of 2 long 
long is slower than querying 100 Fenwick trees.
However, Java version for Fenwick tree of 2 long 
long is slower than querying 100 Fenwick trees.

• So, we accept both solutions.



Association for Convex Main Association for Convex Main 
Office

Problem H



Problem

• Input: An integer N (N  400,000)

• Output: N pairs of 2D coordinates (x , y ) that • Output: N pairs of 2D coordinates (xi, yi) that 
form a convex hull

– such that 0xi,yi4x107.

– No three points are co-linear
(1,2)

• Example: N=4
(0,1) (2,1)

(1,0)



How to generate a convex office?

• Example: N=16
• We form a set of N/4 right-angle triangles, all 

have different slope.have different slope.

• Arrange the triangles in decreasing slopes.
• Create mirror-image.
• Then, a convex office with N vertices is 

3/1 2/1 1/1 1/2

• Then, a convex office with N vertices is 
formed

• Question: How to generate triangles of 
different slopes?



How to generate triangles of different 
slopes?

• Simple solution:

• This solution works for small N.

• When N>20000, the width/height of all 
triangles > 4x107.

3/1 2/1 1/1 1/2 1/3

…… ……

triangles > 4x107.



How to generate triangles of different 
slopes? (II)

• Generate triangle with the shortest height + width first.

– During the generation, need to ensure the height and the width are – During the generation, need to ensure the height and the width are 
co-prime. 

– (This guarantees that the slopes of all triangles are different.)

– E.g. We will not generate (4, 2) since (4, 2) and (2, 1) have the same 
slope.

• 2: (1, 1),

• 3: (1, 2), (2, 1),

h

w

(h, w)
1/1

2/1
1/2

• 3: (1, 2), (2, 1),

• 4: (1, 3), (3, 1),

• 5: (1, 4), (4, 1), (2, 3), (3, 2),

• 6: (1, 5), (5, 1),

• 7: (1, 6), (6, 1), (2, 5), (5, 2), (3, 4), (4, 3),

• ……

2/1



Note

• This is a rare question in ICPC, which asks for 
corner case.corner case.

• But this type of questions is getting popular in 
other competitions.

• We hope that the students can develop skill 
set in this aspect.



Association of Computer Association of Computer 
Maintenance

Problem D



Problem

• Input:
– The prime factorization of K– The prime factorization of K

– (Constraint: Number of divisors of K is ~ 1010.)

• Output: f(A) mod (109 + 7)
– such that integer A minimizes f(A) = (A + K/A)

• Example: K = 23 * 7  
– A=7 minimizes f(A)=A+K/A=7+8

– We output f(A)=7+8=15 



Observation

f(A) = A + 25/Af(A) = A + 25/A

A=5 minimizes
A+25/A



Brute-force solution



A techique that requires us to verify 
~105 divisors



Example
• Initialize A=1
• For x1=1, y1=343  x1*y1 = 343
• For x2=2, y2=343  x2*y2 = 686
• For x3=3, y3=245  x3*y3 = 735
• For x4=4, y4=49  x4*y4=196• For x4=4, y4=49  x4*y4=196
• For x5=6, y5=49  x5*y5=294
• For x6=8, y6=49  x6*y6=392
• For x7=9, y7=49  x7*y7=441
• For x8=12, y8=49  x8*y8=588
• For x9=18, y9=49  x9*y9=882
• For x10=24, y10=35  x10*y10=840
• For x11=36, y11=7  x11*y11=252
• For x12=72, y12=7  x12*y12=504

• The biggest is A=x9*y9=882=2*32*72. 

K2

12005

2401

1715

343

X

X

X

X

K1

1

2

3

4 • The biggest is A=x9*y9=882=2*3 *7 . 
K/A=22*51*72=980.

• A + K/A = 882+980=1862.
245

49

35

7

5

1

X

X

X

X

6

8

9

12

18

24

36

72



Handle big number

• Multiplication of big number is slow.

• Solution: Use logarithm • Solution: Use logarithm 

– Replace X * Y by log X + log Y

• It reduces the running time.



Association for Cool Machineries Association for Cool Machineries 
(Part 2)

Problem B



The problem for part 1

• Give a NxN grid and a sequence of <,>,^,v 

• Output X, which is the smallest repetition trail • Output X, which is the smallest repetition trail 

• Example program: ^v>^<
######
# #  #
# #  #
#  R #
##   #

######
# #  #
# #  #
#   R#
##   #

######
# #  #
# #R #
#    #
##   #

The 



######
# #  #
# # R#
#    #
##   #

^


######
# #  #
# # R#
#    #
##   #

>

######

######
# #  #
# #R #
#    #
##   #
######

^

######

>
######
# #  #
# #R #
#    #
##   #
######

<

######

v
######
# # R#
# #  #
#    #
##   #
######

^

The 
smallest 
repetition 
trail is of 
length 4



######
# #  #
# #  #
#  R #
##   #
######

v

######



######
# #R #
# #  #
#    #
##   #
######

^

######


<



The problem for part 2

• Design 

– a 200x200 grid and – a 200x200 grid and 

– a sequence of <,>,^,v 

• such that the smallest repetition trail is of 
length > 106



Idea

• Design a sequence (say, vv<<<^^^>>) and walls that allows the 
robot to move up, down, left and right.

E.g.• E.g.

• To make the robot move many steps, we design a difficult map.

# #
# #
#a#
# #
# #

b

## #
# a#
## #
#  #
## #
#  #

b

c

c

• To make the robot move many steps, we design a difficult map.

• To make the robot move more, append ^v^v…^v to the end of the 
sequence.
– E.g. vv<<<^^^>>^v^v^v^v…^v



A difficult map for 12x12 grid
• For the 12x12 grid,

– ab: 5 steps

– bc: 6 (=n-6) steps

– ch: 7+6*4 = 31 steps

12
vv<<<^^^>>v^
############
## #### ####
##    #   #
l

e
f

k– ch: 7+6*4 = 31 steps

• cd: 7 (=n-5) steps  (n-11) times

• de: 6 (=n-6) steps

• ef: 6 steps

• fg, gh: 6 (=n-6) steps  (n-8)/2 times

– hi: 10 (=n-2) steps

– in: 31 steps

– na: 6+7+3*6 = 31 steps

• no: 6 (=n-6) steps

• op: 7 (=n-5) steps

• pq, qr, ra: 6 (=n-6) steps  (n-6)/2 times

##    #   #
#  # # # ##
## # ## # ##
#  # # # ##
## # ## # ##
#  #    # #
## ###### ##
#    ##
### # # # ##
############

m

n

o

p

b

c
d
e

g

h
i
j
k

q r a

• pq, qr, ra: 6 (=n-6) steps  (n-6)/2 times

– ab…qra: 5+6+31+10+31+31=114 steps

• In general, the number of steps is

– 5+(n-6)+[ (n-11)(n-5)+(n-6)+6+(n-6)(n-8)/2 ]*(n-2)/5 + (n-2)(n-7)/5 + 
[ (n-6) + (n-5) + (n-6)*(n-6)/2 ],

– which is O(n3).



Generalize the nxn grid

• For the 22x22 grid,

– by the previous formula, the 

22
vv<<<^^^>>v^v^v^v^v^v^
######################
## #### #### #### ####

– by the previous formula, the 
robot needs to use 1,526 steps.

• For the 192x192 grid,

– by the previous formula, the 

## #### #### #### ####
##    #    #    #    #
#  # #  # #  # #  # ##
## # ## # ## # ## # ##
#  # #  # #  # #  # ##
## # ## # ## # ## # ##
#  # #  # #  # #  # ##
## # ## # ## # ## # ##
#  # #  # #  # #  # ##
## # ## # ## # ## # ##
#  # #  # #  # #  # ##
## # ## # ## # ## # ##– by the previous formula, the 

robot needs to use 1,968,630 
steps.

## # ## # ## # ## # ##
#  # #  # #  # #  # ##
## # ## # ## # ## # ##
#  # #  # #  # #  # ##
## # ## # ## # ## # ##
#  #    #    #    #  #
## ################ ##
#                  R##
### # # # # # # # # ##
######################



Note

• This is just one solution.

• You may find another solution.• You may find another solution.

• This is similar to convex office.

• The question asks for designing a corner test 
case.case.

• This is an important problem solving 
technique that is rarely tested in ICPC.



Apples, Cherries, and Mangos

Problem I



Problem

• WLOG, assume A ≥ C ≥ M 

• We need to arrange them so that adjacent fruits are • We need to arrange them so that adjacent fruits are 
different 

• Example: A=2, C=1, M=1



Solution: DP

• V(A, C, M) = no  of valid ways to allocate all fruits
• VA(A, C, M) = no  of valid ways to allocate all fruits given that the first fruit is Apple
• VC(A, C, M) = no  of valid ways to allocate all fruits given that the first fruit is CherryVC(A, C, M) = no  of valid ways to allocate all fruits given that the first fruit is Cherry
• VM(A, C, M) = no  of valid ways to allocate all fruits given that the first fruit is Mango

• Base cases:
– VA(1, 0, 0) = 1, VC(0, 1, 0) = 1, VM(0, 0, 1) = 1
– Vw(x, y, z) = 0 if x<0 or y<0 or z<0 

• Recursive cases:
– VA(A, C, M) = VC(A-1, C, M) + VM(A-1, C, M)
– VC(A, C, M) = VA(A, C-1, M) + VM(A, C-1, M)
– VM(A, C, M) = VA(A, C, M-1) + VC(A, C, M-1)
– V(A, C, M) = VA(A, C, M) + VC(A, C, M) + VM(A, C, M)– V(A, C, M) = VA(A, C, M) + VC(A, C, M) + VM(A, C, M)

• This solution runs in O(A * C * M) 
• It is too slow when the number of fruits is close to 200,000 



Valid arrangement

• WLOG, assume A ≥ C ≥ M 

• For any valid arrangement, apples partitions the sequence into A+1 bins 

• Every bin must be some cherries or mangos • Every bin must be some cherries or mangos 

– Except for the first and the last bins

• Depending on whether first and/or last bins are empty, we have 4 cases 

……

^ ^ ^^ ^ ^

^ ^ ^ ^ ^

……A+1 bins:

^ ^ ^ ^ ^

^ ^ ^^ ^

^ ^ ^ ^

……

……

……

A bins:

A bins:

A-1 bins:



Number of valid arrangements of 
A,C,M

……

^ ^ ^^ ^ ^

^ ^ ^ ^ ^

……A+1 bins:

^ ^ ^ ^ ^

^ ^ ^^ ^

^ ^ ^ ^

……

……

……

A bins:

A bins:

A-1 bins:



Valid arrangement for cherries and 
mangos in each bin

• Suppose we don’t have apple 

• Assume we have c cherries and m mangos • Assume we have c cherries and m mangos 

• To have a valid arrangement, we need 
c=m or c=m-1 or c=m+1

c=m or 2 arrangementsSame: c=m

c=m+1

c=m-1

or 2 arrangements

1 arrangement

1 arrangement

Same:

C_major:

M_major:



How to distribute cherries and mangos 
into k bins?



Final algorithm



Association of Camera Makers

Problem K



Association of Camera Makers

• Input: 
– A set of points (X1,Y1), …, (XN, YN)– A set of points (X1,Y1), …, (XN, YN)

– A threshold K

• Output:
– The minimum radius R such that a circle of radius R that covers K 

points 

• Example: Suppose K=4.• Example: Suppose K=4.
– Ans: R=2



(2,0)




(0,-2)

(-2,0)

 (1,1)



(6,0)



Can we verify if a radius-R circle cover 
K points?

• VerifyRadius(R, K) is a function that returns true if a radius-R circle exists 
that covers K points 

• Suppose there exists a radius-R circle that contains K points 

– Then, the radius-R circles of the K points should overlap 

– Any point in the overlapping region can be the center of the radius-R circle.
• In particular, we can set any intersecting point as the center of the radius-R circle.

Example: R=4, K=4








 




Idea for VerifyRadius(R,K)

• Let (Xi, Yi) and (Xj, Yj) be any two points 

• Let Q and Q’ be the intersecting points of the radius-R circles of (Xi, Yi) and • Let Q and Q’ be the intersecting points of the radius-R circles of (Xi, Yi) and 
(Xj, Yj) 

• If there exist (K-2) other points whose distances from Q (or Q’) are less 
than R, then

– VerifyRadius(R, K) returns true.

Example: R=4, K=4








(Xi, Yi)

(Xj, Yj)

Q

Q’






VerifyRadius(R,K)

Function VerifyRadius(R, K)

• For every pair of points (Xi,Yi) and (Xj,Yj),• For every pair of points (Xi,Yi) and (Xj,Yj),

– If the radius-R circles of (Xi,Yi) and (Xj,Yj) overlap,

• Let the intersecting points be Q and Q’

• Check if there are (K-2) points whose distances from Q 
(or Q’) are less than R;

• If yes, return true;If yes, return true;

• Return false;

• The running time is O(N3);



Solution

• Note that 0 and 106 are the lower bound and upper 
bound, respectively, of the radius R  bound, respectively, of the radius R  

• This problem can be solved by binary search using 
FindRadius(0, 106) 

• FindRadius(L, U)
– If (L and U are the same up to 2 decimal place) report L;
– M=(L+U)/2;– M=(L+U)/2;
– If VerifyRadius(M, K) is true,

• FindRadius(M, U);

– Else
• FindRadius(L, M);



Still not good enough

• Previous solution runs in 
O(N3 log 108) = O(27 N3) time O(N3 log 108) = O(27 N3) time 

• It can handle cases where N<1000 

• Hence, it can solve 10 out of 16 test cases 

• To solve all 16 test cases, please read the paper:
– Jiri Matousek. On enclosing k points by a circle, 1995 – Jiri Matousek. On enclosing k points by a circle, 1995 

– Implementing this algorithm without an accelerating 
grid gives an O( N2 log2 N ) solution  The full algorithm 
with the grid takes O( NK log2 K ) time 
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